

(13) J. W. ApSimon and H. Bierbeck, *J. Chem. Soc., Chem. Commun.*, 172 (1972).

(14) We have observed repeatedly that the algorithm auto-assignment²³ finds an L-S complex which has the smallest possible *R* factor for that data set under investigation. In the event that we auto-assign all resonances in a molecule whose resonances were independently identified, we recover the correct L-S array. In one or two cases we find a second L-S array, with some assignments differing, which was characterized by a smaller *R* factor. In general, we find that it is an excellent screening device since poor structures give large minimum *R* values and these can be rejected with confidence.

(15) W. C. Hamilton, "Statistics in Physical Science", Ronald Press, New York, N.Y., 1964, pp 157-162.

(16) We thank Dr. Gullford Jones, II, for details of this procedure.

(17) Prepared in 21% overall yield as described by P. K. Freeman, D. M. Ball, and D. J. Brown, *J. Org. Chem.*, **33**, 2211 (1968).

(18) Methods tried included a number of preparative GLC columns, washing

etheral solutions with aqueous silver nitrate or sodium bisulfite, and column chromatography on silver nitrate-silica gel.

(19) Procedure of C. K. Steinhart as described by L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis", Vol. 1, Wiley, New York, N.Y., 1967, p 584.

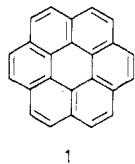
(20) A. Bowers, T. G. Halsall, E. R. H. Jones, and J. A. Lemm, *J. Chem. Soc.*, 2548 (1953).

(21) These two markers are shifted upfield due to a bulk susceptibility effect, but they maintain the same 7.26-ppm relationship and thus serve as reference points for the measurement of all the signals. This is useful, especially since $\text{Eu}(\text{fod})_3$ itself has a strong absorption near tetramethylsilane.

(22) The instrument often needs retuning for each new doping ratio. A delay of several minutes between placing the doped sample in the probe and running the spectrum minimizes the retuning problem.

(23) The program PDIGM includes the autoassign algorithm. Copies of the program are available on request from R.E.D. or M.R.W.

Synthesis and Properties of Some Heterocirculenes¹


J. H. Dopper and Hans Wynberg*

Department of Organic Chemistry, The University, Zernikelaan, Groningen, The Netherlands

Received December 27, 1974

The synthesis of some heterocirculenes is reported. Based on a model study, we recognize two classes of circulenes, namely planar and nonplanar ones. Depending on the ratio of the outer and inner radii, bowl-shaped and corrugated nonplanar circulenes may exist. Attempts to prove that [7]-heterocirculenes belonged to the corrugated type of circulenes failed. The spectral characteristics of heterocirculenes are reported in detail.

Coronene and Corannulene. Coronene (1) is unique in the family of polycyclic aromatic compounds.² It has been of interest for many years not only because of its symmetric graphite-like structure but also because its synthesis continues to present a challenge to the ingenuity of the organic chemist. Scholl and Meyer announced in 1932 the first synthesis of 1.^{3a} Since then others have reported improved

1

syntheses of 1.^{3bc} The high symmetry of the coronene molecule is of great value in the interpretation of spectroscopic results and their mathematical treatment. Coronene is an alternant hydrocarbon. According to the Hückel approximation there is no net charge on any atom in the system and the energy levels are symmetrically placed about the value of the α integral.⁴ A complete determination of the coronene structure has been obtained by X-ray analysis.⁵ It is a completely flat molecule. The carbon-carbon length varies in different parts of the molecule. The central ring and the "spokes" connecting it to the outer edges have bond lengths of 1.43 Å. The outer bonds are of two types measuring 1.41 and 1.38 Å. The planarity of coronene—and its many benzoid homologs—is an obvious consequence of the angular fusion of six benzene rings in the manner indicated (see 1). When the number of aromatic rings—angularly annulated to form a "coronene"—deviates from six, the possibility of nonplanarity arises. A classical example of this type of molecules is corannulene (2), first prepared and studied by Barth and Lawton.⁶ It has attracted much interest because despite its coronene-like structure it differs from the latter in two essential features. (a) Corannulene is a nonplanar, highly strained molecule. X-Ray analysis⁶ demonstrates that it has a bowl-like shape (Figure 1). (b) Corannulene is a nonalternant hydrocarbon.⁴ According

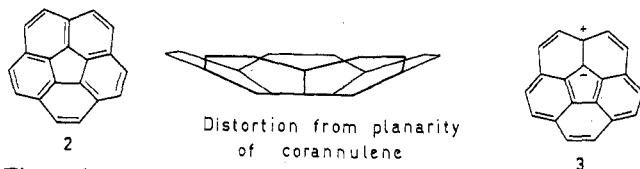


Figure 1.

to the Hückel theory, the electronic charge on each carbon atom differs in the ground state from one. An attractive way to accommodate this charge separation is found in structure 3, in which two concentric annulene systems are formed. Both the cyclopentadienyl anion as well as the cyclopentadecaheptaenyl cation obey the well-known Hückel $4n + 2$ rule. SCF-MO calculations carried out by Gleicher⁷ support the idea that 3 contributes to the stability of the ground state. However, no experimental data have been presented which substantiate any contribution from 3.

Results of a Model Study. The structural differences between 1 and 2 (planarity vs. nonplanarity) can be made clearer by the following considerations. It is assumed that there are two circles of fixed diameter both of which are (within moderate limits) flexible. These circles (radii r_1 and r_2 , $r_1 < r_2$) are connected by spokes of a constant length a (Figure 2).

The optimal geometry will be determined by the following factors.

(a) If $r_1 + a = r_2$ then both circles will lie in a common plane (Figure 2a), as in coronene (1).

(b) If $r_1 + a > r_2$ then a likely geometry is one in which

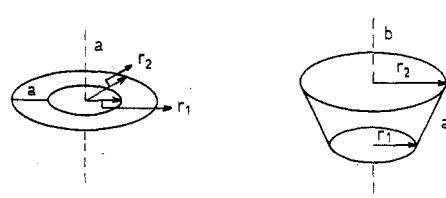


Figure 2.

the two circles lie in parallel planes (Figure 2b), as in corannulene (2).

(c) If $r_1 + a < r_2$ then the "extra" diameter of the outer circle is taken up by forming an unending wave; in other words, the system becomes corrugated. Molecular models indicate that this can be exemplified by the conformation of the hitherto unknown compound 4 (Figure 3).

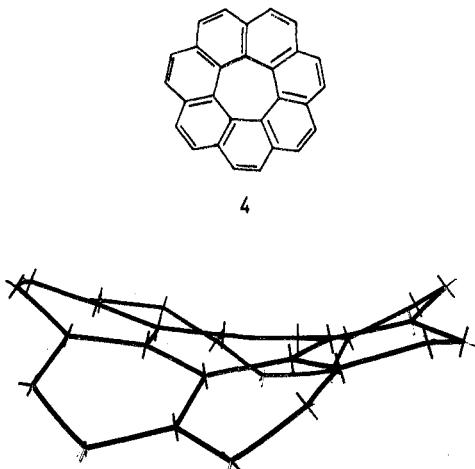
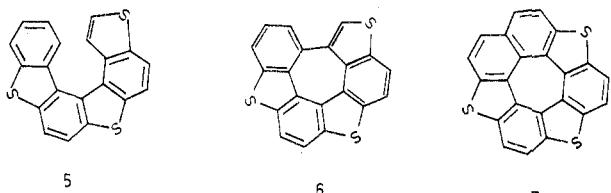



Figure 3.

r_1 and r_2 can be varied endlessly. Consequently the number of possible molecules which conform to these restraints is almost unlimited. Since the term "coronene" is firmly established to one compound and because of their circular arrangement of aromatic rings, it is proposed that this class of molecules be called *circulenes*.⁸ A $[m]$ -circulene is then a circulene constructed out of m aromatic rings. A circulene in which one or more aromatic rings are replaced by a heterocyclic ring will be called a heterocirculene.

Heterocirculenes. A study of the preparation of heterohelicenes was started around 1966 by Groen and Wynberg.^{10,11} By 1971, the synthetic pathways leading to heterohelicenes were improved in such a way that these helicenes were "available" for a further study.

Among the many points of interest was the question of transannular effects. This led to the preparation of 6, a compound in which the two helical termini of 5 are connected by a σ bond. Molecules like 6 were called dehydrohelicenes.¹² This compound was of particular interest to us because in its structure a great deal of that of the [7]-heterocirculene 7 was realized. Moreover, simple models

suggested that this circulene 7 could have the nonplanar corrugated structure proposed above. (The limits of bond length adjustments which might keep a "corrugated" circulene planar are not known, of course.) One other early example of a heterocirculene exists. Erdtman and Höglberg¹³ cyclized a number of quinones under the influence of acids. The [8]-heterocirculene 8 is obtained in low yield when *p*-benzoquinone is treated with a mixture of sulfuric acid, acetic acid, and water (Figure 4). The authors expect 8 to be planar or nearly planar. The structure of 8 has not yet been determined by X-ray analysis.

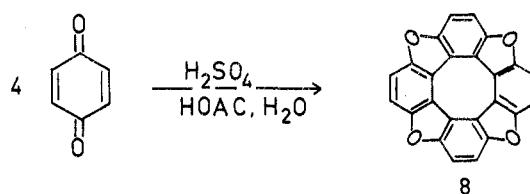


Figure 4.

The Preparation of Heterocirculenes. Patterned after the Diels-Alder addition of maleic anhydride to perylene,^{3b} we found that when the dehydrohelicene 6 was allowed to react with maleic anhydride in the presence of chloranil as

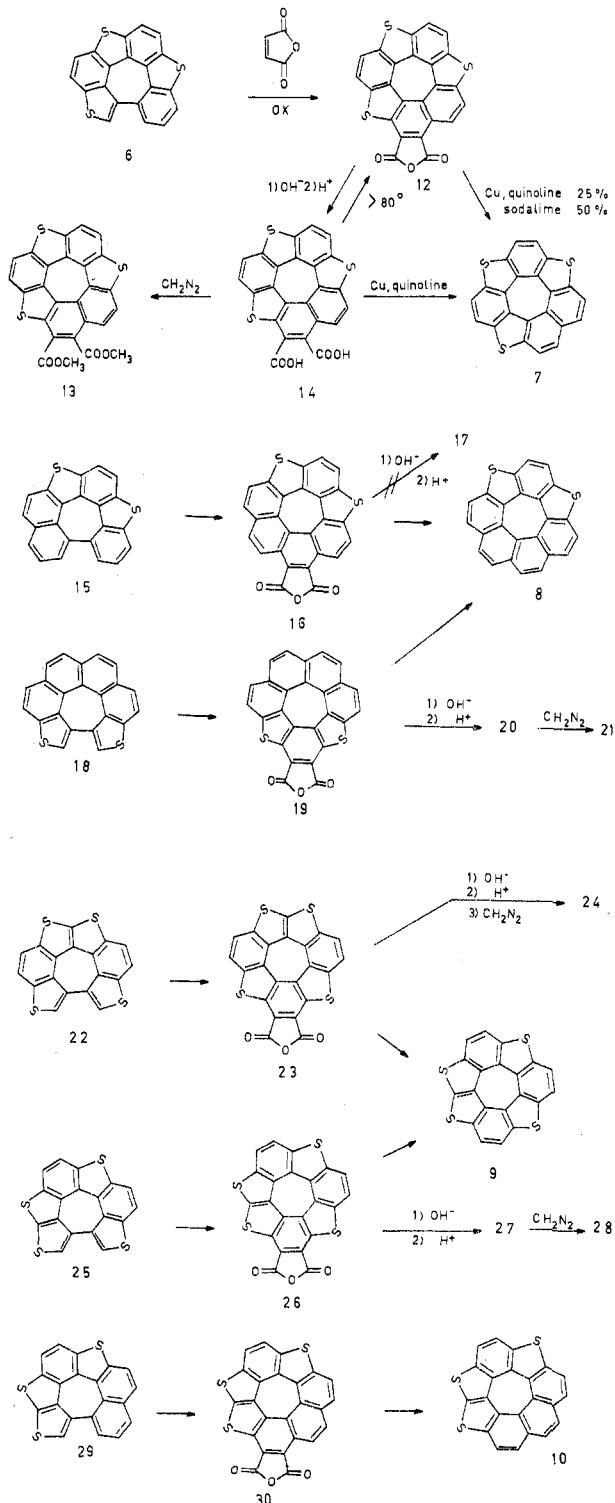


Figure 5.

oxidizing agent, the red anhydride 12 (mp above 400°) was obtained in 65% yield (Figure 5). When the reaction was carried out without an oxidizing agent no reaction was observed and the starting materials were recovered completely. Chloranil was superior to sulfur, nitrobenzene, or oxygen as an oxidizing agent. The anhydride 12 was only slightly soluble in nitrobenzene and quinoline whereas it was almost completely insoluble in common organic solvents. From 12 no NMR, uv, and MS could be obtained. Its ir spectrum showed the principal absorptions at 1825 and 1722 cm^{-1} , absorptions characteristic for the anhydride moiety.

The anhydrides 16, 19, 23, 26, and 30 were prepared by the same method and are shown in Figure 5.

In Diels-Alder reactions of this type maleic anhydride has some distinct advantages. It is a reactive but stable dienophile which can withstand high temperatures for long reaction periods. This in contradistinction to dienophiles like dicyanoacetylene, which is known to polymerize at higher temperatures.¹⁴ An additional important factor is the insolubility of the obtained anhydrides, which makes them easy to isolate from the reaction mixtures. When instead of maleic anhydride, dicyanoacetylene or dimethyl acetylenedicarboxylate were used as dienophiles, very complex reaction mixtures were obtained from which no definite products could be isolated. With acrylonitrile no reaction was observed. Somewhat better results were obtained when methyl propiolate was used. The addition product 31 was obtained in 34% yield when 18 was allowed to react with methyl propiolate at 130° for 48 hr (Figure 6). When 31 was hydrolyzed an acid 32 was obtained which upon decarboxylation gave the heterocirculene 8 in 40% yield.

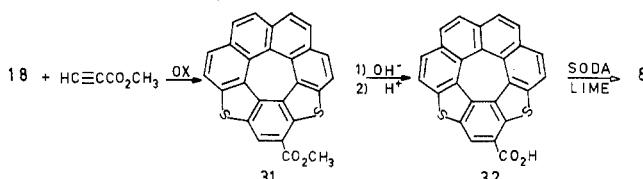


Figure 6.

The Para-Localization Energies.^{15,16} The yields in which the anhydrides are formed from the corresponding dehydrohelicenes vary from 17 to 70%. This indicates that the dehydrohelicenes differ from one another in their reactivity toward Diels-Alder additions. For the two isomeric dehydrohelicenes 15 and 18 we calculated the para-localization energies for the positions indicated in Table I using HMO methods.^{4,17} The results are in agreement with the experimental data.

Table I

Compd	Diels-Alder yield, %	Para-localization energies (Dewar) in β units	Positions	Para-localization energies (Brown) in β units
18	60	3.712	1.12	3.120
15	17	4.624	1.12	4.140
37		4.053	1.11	3.640
		4.392	1.2 ^a	3.777

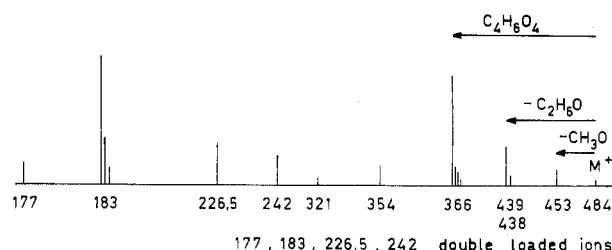


Figure 7. Mass spectrum of 13.

Hydrolysis of the Anhydrides. A. Results. The anhydrides described in the preceding section were further identified by conversion into the corresponding dimethyl esters (Figure 5). A case in point was 12, which, when treated with dilute base for 30 min, gave a pale yellow salt which furnished the diacid 14 upon acidification. This acid was rather unstable. As soon as it was formed it started to revert into 12. Consequently 14 was isolated as quickly as possible and transformed directly into the dimethyl ester 13 by treatment with diazomethane. Relative to 12 the dimethyl ester was easier to handle and it could be chromatographed and recrystallized as in normal working-up procedures. However, its solubility was still too low to allow a well-resolved NMR spectrum to be obtained. Its mass spectrum is shown in Figure 7. The main features of this spectrum are typical for compounds related to dimethyl phthalate. Above its melting point or by treatment with 48% HBr 13 is transformed again into 12. When 16 was treated with a dilute NaOH solution the corresponding disodium salt was easily obtained. Upon careful acidification a dark yellow compound, presumably the dibasic acid 17, was obtained but before it could be filtered and dried it had reverted completely into 16. The diacids 20 and 27 were much more stable. They can be stored for hours and are thermally stable to at least 100°. Clearly the stability of these diacids is of the following order (Figure 8).

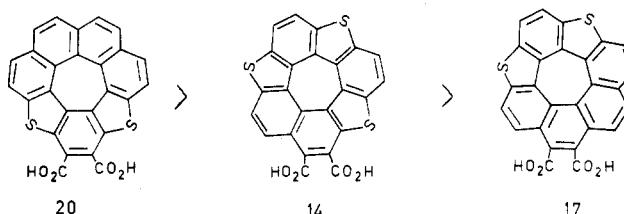


Figure 8.

B. Discussion. Phenanthrene-9,10-dicarboxylic acid (33) is unknown to date.¹⁸ The instability of this compound is ascribed to the presence of β hydrogen atoms next to the carboxyl groups. These atoms are believed to bring the carboxyl groups closer together than, for instance, in phthalic acid. The angle between the C-COOH bond and the plane of the C=C bond is decreased to less than 123° (the corresponding angle in phthalic acid). The result is an increased interaction between the two carboxyl groups and consequently anhydride formation will be preferred. Bruice and Pandit¹⁹ reported that the rate of anhydride formation is greatly enhanced when the free rotation of the reacting carboxyl groups is restricted. Molecular models show clearly that the β hydrogen atoms in 33 (Figure 9) indeed cause a

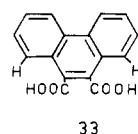


Figure 9.

Table II
Mass Spectra of the Heterocirculenes

Compd	M^+	$M - S$	$M - H_2S$	$M - CH_3S$	$M - CH_3S$	$M - C_2S_2$	M^{2+}
7	100	2	2	2	4		40
9	100			8	3		80
8	100	2	4	3	3		35
10	100	2	2	2	2		50
11	100	2		2	2		32

restricted rotation of the carboxyl groups. However, these β hydrogen atoms are no longer present in 34, where the two outer benzene rings are replaced by thiophene rings. In this compound rotation is no longer restricted and as a result this acid is expected to be much more stable than 33. This is in full accordance with the experimental results presented in this section.

Decarbonylation of the Anhydrides. The Heterocirculenes. The heterocirculenes were obtained by decarbonylation of the corresponding anhydrides (Figure 5). The decarbonylation could be effected either by prolonged boiling with copper powder in quinoline or by pyrolysis with soda lime. The first method gave poor results. The anhydrides were only partially decarbonylated and the heterocirculenes were not obtained in a yield higher than 20%. Decarbonylation with soda lime is a method used frequently in the synthesis of polyaromatics.^{3b} Normally the anhydride is heated together with the soda lime at 400° for several hours and from the reaction mixture the hydrocarbon is removed by sublimation. The heterocirculenes described in this paper were stable enough to survive 400° and they were isolated by this method in about 50% yield.

The heterocirculenes crystallized from *p*-xylene in long, thin needles. They have a green-yellow color and show a weak fluorescence in solution. They do not melt but decompose very slowly above 350°. They are sparingly soluble in common organic solvents, making CAT NMR spectroscopy mandatory. From the circulene 8 a picrate (anthracite colored) was obtained which did not melt but instead decomposed over a wide range. The heterocirculenes show in their mass spectra as the only significant peaks the singly and doubly charged molecular ions. Low-intensity fragments $M - S^+$, $M - H_2S^+$, and $M - CHS^+$ could be detected. The mass spectral data of the heterocirculenes are collected in Table II.

Structure Proof of the Heterocirculenes. The conversion helicene \rightarrow circulene represents in effect the addition of two carbon atoms to the helicene to form a new cyclic system containing an extra benzene ring. This means that identical circulenes can be prepared from different helicenes as indicated below (Figure 10). Based on this ap-

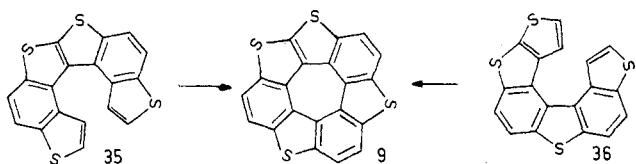


Figure 10.

proach the circulene 9 was prepared from both the helicenes 35 and 36. This two-way synthesis of 9 verifies unambiguously the structures of the heterocirculenes as well as the structures of the intermediate dehydrohelicenes.

Synthesis of Thiacoronene. Boekelheide²⁰ has recently reported the isolation of the heterocirculene 11, called thiacoronene. It should be noted that 11 belongs theoretically

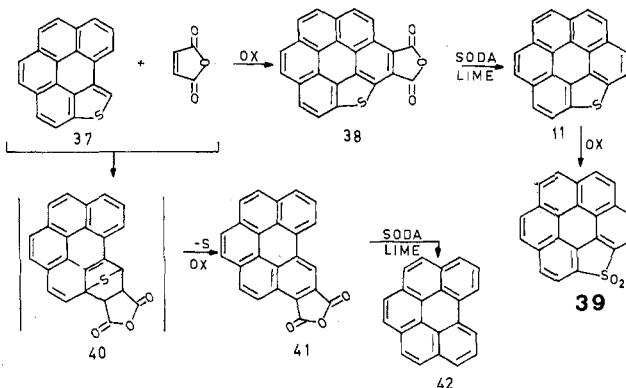


Figure 11.

to the corannulene class of circulenes, that is, it might be bowl shaped. It appeared that our route to thiacoronene, namely via the dehydrohelicene 37, would allow 11 to be readily prepared. Nevertheless this apparently straightforward synthesis deserves some comment.

The Diels-Alder addition of maleic anhydride to the dehydrohelicene 37 furnished a mixture of anhydrides (Figure 11). The presence of anhydride functions was demonstrated by IR spectroscopy. The mixture showed absorptions at 1820 and 1760 cm^{-1} . Elemental analysis of the purified anhydrides gave a lower sulfur percentage than calculated for 38. The anhydride mixture was not purified any further, but was directly decarboxylated with soda lime. A careful analysis of the reaction mixture showed the presence of at least five products. Mass spectral analysis of the mixture showed molecular ions at m/e 350, 306, and 276. The compound with $M^+ m/e$ 350 could not be isolated or identified. The compounds with $M^+ m/e$ 306 and 276 could be obtained pure and were identified as 11 and 42. The UV spectrum of thiacoronene was found to be identical with that recorded by Boekelheide²⁰ et al. The reason for the formation of more than two different anhydrides during the Diels-Alder addition is not understood at the moment. The presence of 42 as a reaction product can be explained by assuming a 1,4 addition of maleic anhydride to the thiophene ring of 37.²¹ From the intermediate 40 sulfur is lost and the resulting anhydride 41 is decarboxylated to 42.

The values of the para-localization energies for the different sites of adduct formation in 37 are shown in Table I. These values support the possibility of a Diels-Alder addition to the thiophene ring of 37. However, the very low yield in which 11 is formed cannot be blamed on this side reaction, because the calculations predict additions to take place almost exclusively at the 1,11 position. Thiacoronene sulfone (39) was obtained by oxidation of 11 with *m*-chloroperbenzoic acid in methylene chloride. Only 0.8 mg of 39 was obtained and from this material only a mass spectrum was taken. The spectrum is shown in Figure 12. This spec-

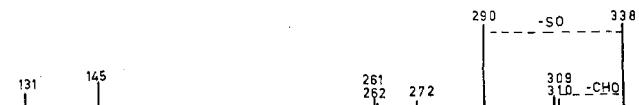


Figure 12. Mass spectrum of 46.

trum has an interesting feature. The sulfone loses little or no oxygen directly [1% relative abundance for $(M - 16)$ peak, 3% for the $(M - 32)$ peak]. Instead the most predominant peak in the spectrum, m/e 290, appears to be due to the formation of an oxacoronene ion 46 (Figure 13). A similar fragmentation has been observed in sulfones of a related structure.²² However, the intensity of the fragmentation

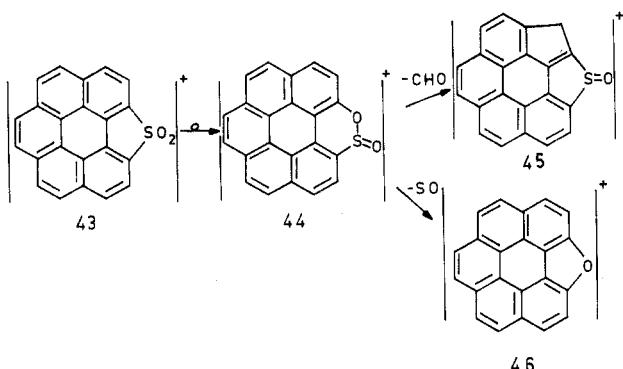
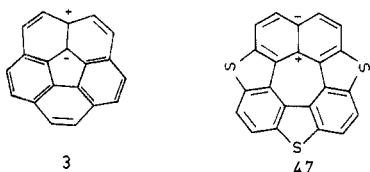



Figure 13.

representing 46 is unusually large, demonstrating the greater stability of the latter. The formation of the oxacoronene ion can best be explained²³ by a rearrangement of 43 to the cyclic sulfinate ester 44, which either eliminates HCO or SO.

Spectral Properties of the Heterocirculenes. NMR Spectra. Charged structures like 3 and 47 may contribute

respectively to the ground state of 2 and 7. If they do so, a direct influence of this charge distribution on the ¹H and ¹³C chemical shifts in the NMR spectra is predicted.²⁴ However, Barth and Lawton⁶ did not publish the ¹³C NMR spectrum of 2 and because of the limited solubility of the heterocirculenes in NMR solvents, no ¹³C NMR spectra of these molecules could be obtained. The ¹H signal of 2 is found at δ 7.80 ppm, a value little changed from that of benzene. The ¹H NMR spectra of the heterocirculenes are given in Figure 14. They all consist of multiplets centered about δ 7.6 ppm. These are normal values for condensed

sulfur heterocycles. Hence, the ¹H chemical shifts in the NMR spectra of the heterocirculenes give no significant indication for a polarization in the ground state.

Uv Spectra. The uv spectra of the heterocirculenes are drawn in Figure 15. The uv spectra of the [7]-heterocirculenes show resolved bands with much vibrational structure. They resemble the uv spectra of the corresponding dehydrohelicenes.¹² Relative to those dehydrohelicenes a 10–20- μ red shift of the longest wavelength band is observed. A much larger red shift is observed when the longest wavelength band of a thiophthene²⁵ containing heterocirculene is compared with those of its corresponding dehydrohelicene.¹² Red shifts up to 62 m μ were found. The uv spectrum of 9 does not differ essentially from that of 7.¹² To account for these results the uv spectra of 7 and 9 were calculated²⁶ by PPP type of semiempirical SCF-MO calculations.²⁷ In these calculations, limited configuration interaction was employed by taking into account all singly excited states corresponding to excitation of an electron from the four highest occupied orbitals into the four lowest vacant orbitals. In the calculations the molecules were assumed to be flat and the geometry was based on the known bond lengths and bond angles of thiophene²⁸ and benzene.²⁹ Electron repulsion integrals were evaluated with the aid of the Nishimoto and Mataga³⁰ approximation. The variable β modification of the PPP method³¹ has been employed, using the following parameters:³² $I_c = 11.22$, $\gamma_{cc} = 10.53$ and $\beta_{cc} = -0.51p - 1.84$ eV; $I_s = 20.00$, $\gamma_{ss} = 10.84$ and $\beta_{cs} = -1.625$ eV. The results are given in Tables III and IV.

As can be seen from the results in Table IV, the calculations predict the general features of the uv spectra very well. The uv spectrum of thiacoronene (11) corresponds very closely to that of coronene² itself. It is almost identical with respect to the nature and position of the absorption bands. The intensity of the absorption bands differs somewhat. Relative to coronene the α band has a higher and the β band a lower intensity.

ESR Spectra. Radical anions of the heterocirculenes 7 and 9 were obtained by electrolysis in DMF. They were generated in a 10^{-3} M solution at a constant current of 10 μ A. Using this procedure 10^{-2} M supporting electrolyte

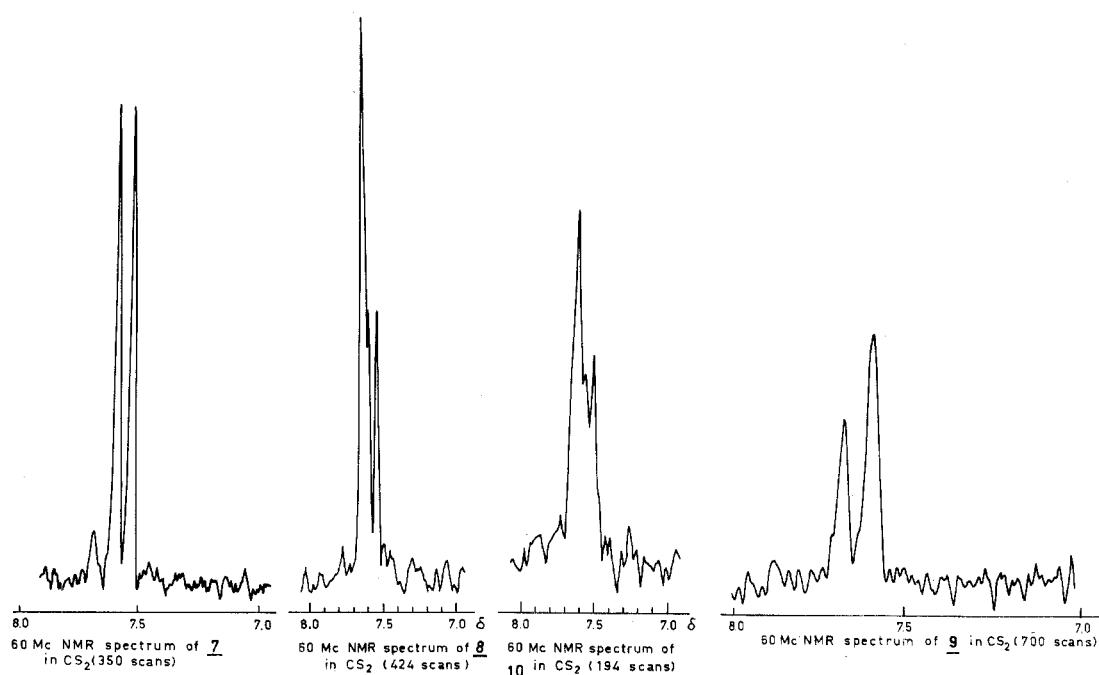


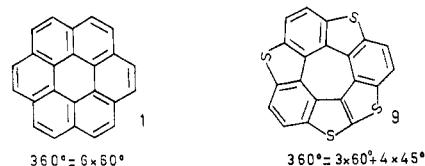
Figure 14.

Table III
Experimental and Calculated Transitions of the Heterocirculenes 7 and 9 (λ_{max} , m μ)

Compd	Experimental		Calculated	
	nm (log ϵ)		nm (f)	
9	425 (2.92), 399 (3.14), 383 (3.60), 363 (3.55), 233 (4.32), 318 (4.20), 288 (4.47), 275 (4.65)		390 (0.05), 348 (0.06), 336 (0.29), 323 (0.72), 292 (0.01), 283 (0.48), 280 (1.61), 274 (0.29), 264 (0.53), 257 (0.00), 256 (0.05), 252 (0.04), 230 (0.07), 226 (0.15)	
7	431 (2.40), 408 (2.90), 387 (3.25), 369 (3.35), 357 (3.54), 311 (3.82), 289 (4.10), 258 (4.40), 240 (4.20)		390 (0.04), 366 (0.16), 359 (0.38), 352 (0.14), 299 (0.83), 287 (0.54), 286 (0.24), 282 (0.18), 276 (0.04), 275 (0.47), 257 (0.98), 254 (0.70), 238 (0.17), 233 (0.11)	

Table IV
The Red Shift $\Delta\lambda$ of the Longest Wavelength Absorption of the Heterocirculenes Relative to the Corresponding Dehydrohelicenes

Compds	$\Delta\lambda$ obsd, m μ	$\Delta\lambda$ calcd, m μ
6 \rightarrow 7	18	6
25 \rightarrow 9	49	30
22 \rightarrow 9	62	40


tetraethylammonium perchlorate (TEAP) was suitable. The resulting ESR spectra of the radical anions of 7 and 9 are shown in Figure 16. The assignment of the different hyperfine splitting constants was made by comparing them with the theoretical values obtained by McLachlan's approximate SCF method³³ and the McConnell relationship.³⁴ The results are summarized in Table V.

Correlation between Nonplanarity and Optical Activity. Preparation of a Methylated Circulene. Optical activity of a suitable circulene would be *prima facie* evidence for nonplanarity. Nonplanar circulenes can be bowl shaped or corrugated and a qualitative way to discriminate

Table V
Splitting Constants of the Circulene Radical Anions

Compd	Splitting constants, G			
	$a_{\text{H}1}$	$a_{\text{H}2}$	$a_{\text{H}3}$	$a_{\text{H}4}$
7	2.0	0.2	1.25	3.35
	1.494	-0.348	1.316	5.959
9	2.6	0.5	3.8	obsd
	3.071	0.420	3.289	calcd

between these molecules is based on the geometry of the aromatic rings from which the circulene is constructed. The internal angle (the angle between two carbon–carbon double bonds) of a benzene ring is 60°, whereas those for thiophene^{35a} and furan^{35b} are 45 and 30°, respectively (Figure 17). In order to obtain a circulene which is approximately strain-free the sum of these angles need to be 360°. This is the case in coronene (1) and in the heterocirculene 9. We

know from coronene that it is a planar molecule⁵ and most probably 9 is also planar. When the sum of the individual internal angles differs from 360° the construction of a circulene will be attended with introduction of additional strain energy. The difference between bowl-shaped and corrugated cyclenes is that in the former the sum of these angles is less than 360° and in the latter more than 360°. In corannulene (2) this sum is 300° (5 × 60°), whereas in the [7]-cyclene 4 it is 420° (7 × 60°). For obvious reasons in our attempts to demonstrate nonplanarity of the heterocirculenes we concentrated our attention on the heterocirculene 8, in which the sum of the internal angles (390°) deviates most from 360°. However, 8 had to be substituted in order to make it dissymmetric. A substitution reaction of this type had to conform to the following requirements: (a) result in a compound which had an unequivocal substitution pattern, (b) furnish the substituted compound in high yield. A compound with an unequivocal substitution pat-

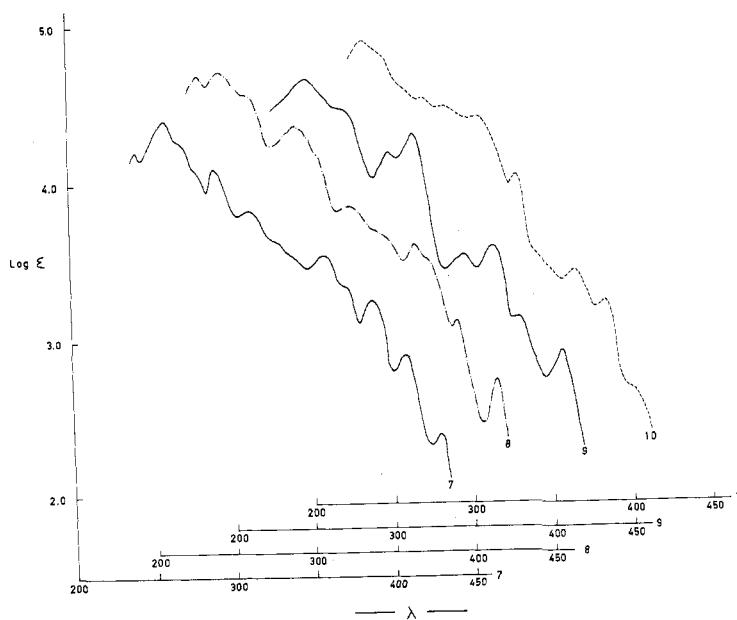
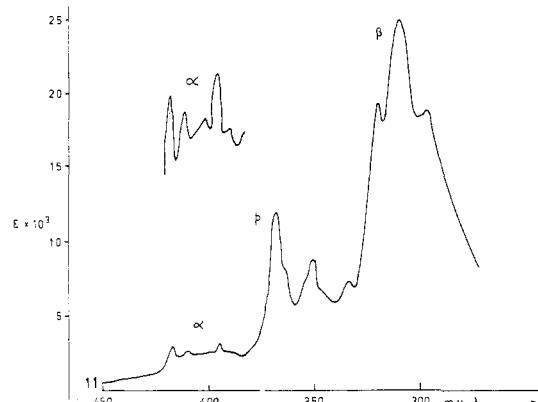



Figure 15. The uv spectra of the heterocirculenes in CHCl_3 .

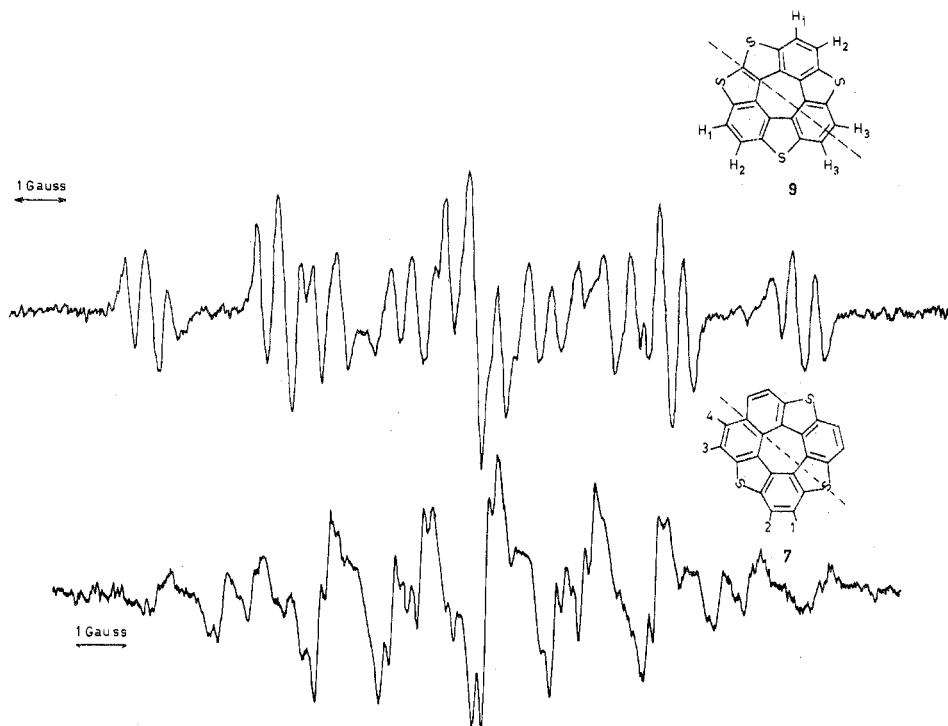


Figure 16. ESR spectra of the radical anions of 7 and 9.

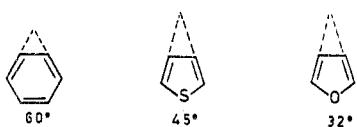


Figure 17.

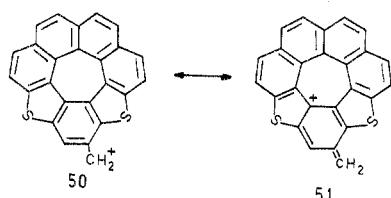
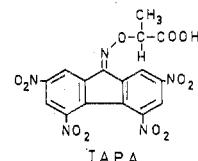
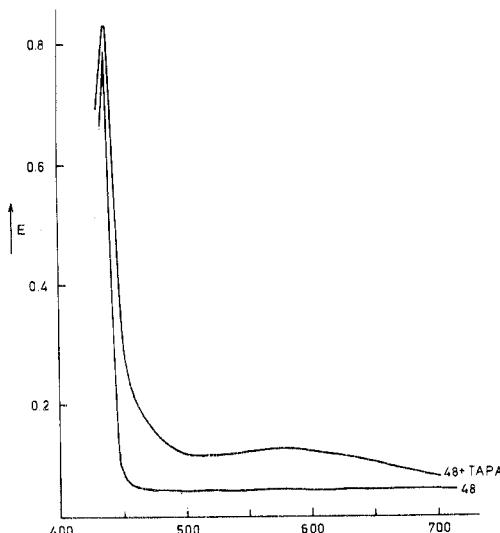




Figure 18.


tern had been realized in the synthesis of 31. The methylated circulene 48 was a suitable compound for the resolution experiments. Therefore we directed our attention to the conversion of 31 into 48. This could be achieved in a very simple one-step reduction. Treatment of 31 with LiAlH₄ under normal reaction conditions did not furnish 49 (as expected), but yielded almost quantitatively 48 (Figure 18). This reaction is thus a rare example of a one-step reduction of an ester to the corresponding hydrocarbon initiated by a metal hydride only.³⁶ Closely related reactions are found in reports of reductions with LiAlH₄-AlCl₃.³⁷ The reduction procedure is believed to involve carbonium ion intermediates. Thus, the reaction described above provides an indication of the relatively great stability of the intermediate carbonium ion 50. The aromatization to the inner seven-membered ring in structure 51 might explain this.

Diastereomeric Complex Formation. In the attempted resolution of 48 we followed the procedure which had been developed by Newman for the resolution of hexahelicene.³⁸ When a solution of the circulene 48 in benzene was treated with 1 equiv of (+)-TAPA, $[\alpha]^{20}_{436} +432^\circ$, the solu-

tion became green. The uv spectrum of the resulting solution was recorded and the spectrum shown in Figure 19 was obtained. A broad absorption band with a maximum at 570 m μ was observed. Neither 48 nor TAPA separately exhibit an absorption above 450 m μ , a clear indication for the pres-

Figure 19. Uv spectra of 48 and of 48 + TAPA (1:1 molar) in C₆H₆.

ence of a charge-transfer complex. In the actual resolution experiment 48 was treated with 0.5 equiv of (+)-TAPA. Upon the addition of ethanol some of the circulene separated as yellow needles. A further application of this treatment afforded a small quantity of 48, which showed no optical rotation (measured at 436, 546, and 578 μ). We repeated the experiments at lower temperature. Both the circulene and TAPA were soluble in 1,2-dichloroethane at -30° . Solutions of 48 and (+)-TAPA were mixed at 25° and some ethanol was added. The solution was cooled carefully to -30° , after which the circulene started to crystallize. The circulene crystals were isolated and then redissolved in CS_2 at -30° . Again no optical rotation was observed. A small quantity (0.9 mg) of the circulene TAPA complex could be obtained in crystalline form when the experiments were carried out in chloroform. The measured rotation of this complex was $\alpha_{436}^{20} +0.025^\circ$. From this complex the circulene could be regained by addition of ethanol, but again no optical rotation was observed. The experiments described above were repeated with the circulene 10. The same negative results were obtained.

Discussion

A few comments about these negative results are in order.

Three particular factors may be invoked to explain the failure of the resolution experiments:

- (1) adjustments of bond lengths and bond angles keep a circulene planar;
- (2) the circulenes are nonplanar, but inversions occur at such a rate that resolution is prevented;
- (3) the method used for the resolution was not the appropriate one.

Inversions of a corrugated circulene can proceed via a planar transition state or via an undulating motion which passes through the whole molecule. It is very difficult to differentiate between these two modes of inversion and until experimental proof concerning possible nonplanarity of our heterocirculenes is available further predictions about this subject seem useless.⁴⁰ Concerning the resolution method: [7]-heterocirculenes readily form charge-transfer complexes in which the former function as donor molecules (see Experimental Section). This may be ascribed to a partial aromatization of the inner seven-membered ring which of course promotes planarity of the molecule. Moreover, it is known that in some cases formation of charge-transfer complexes enhances greatly the rate of racemization.⁴¹ This diminishes to some extent the importance of our resolution experiments with TAPA.

Experimental Section

All reagents were purified where necessary by standard methods. For column chromatography neutral alumina (Merck A₁) or silica gel (B. D. H.) was used. Melting points (corrected) up to 300° were determined on a Mettler FP₁ microscope and between 300 and 350° (uncorrected) on a Reichert hot-stage apparatus. Uv spectra were measured on a Zeiss PMQ 11 or recorded with a Beckman DB-G grating spectrophotometer. NMR spectra were obtained with a Varian A-60D instrument, using tetramethylsilane as an internal standard. The chemical shifts are expressed in δ values (parts per million). Mass spectra were obtained with a AEI MS 902 instrument and recorded by Mr. A. Kiewiet. The ESR spectra were recorded on a Varian E₄ spectrometer. Elemental analyses were carried out by Mr. H. Draayer, Mr. J. Ebels, and Mr. J. Vos in the microanalytical department of this laboratory. Optical activity was measured on a Zeiss Lichtelektrisches Präzisionsspoliometer 005 using 5- or 10-cm cells.

9,10-Epithio-3,6-dithianaphth[2',1',8':3,4,5]azuleno[1,8,7,6-cdef]fluorene-1,2-dicarboxylic Anhydride (12). The dehydrohelicene 6 (50 mg, 0.15 mmol), chloranil (125 mg, 0.51 mmol), and maleic anhydride (750 mg, 7.7 mmol) were mixed together in a

50-ml reaction flask. The flask was equipped with an air condenser and the flask contents were brought under a nitrogen atmosphere. The flask was put into a molten metal bath of 220° and the reaction mixture was refluxed for 2 hr. After cooling, 20 ml of *p*-xylene was added and the resulting suspension was refluxed for an additional 10 min. After cooling, the orange-red anhydride was filtered, washed thoroughly with *p*-xylene and ether, and dried in vacuo. The analytically pure anhydride 12 (mp $>400^\circ$) was obtained by sublimation (350 – 400° , 10^{-4} mm). The yield of 12 was 43 mg (65%).

Anal. Calcd for $C_{24}H_{16}S_3O_3$: C, 65.74; H, 1.38; S, 21.93. Found: C, 65.8; H, 1.6; S, 21.9.

Ir (KBr) 1825, 1772, 1220, 1149, 895, and 790 cm^{-1} .

9,10-Epithio-3,6-dithianaphth[2',1',8':3,4,5]azuleno[1,8,7,6-cdef]fluorene-1,2-dicarboxylic Acid Dimethyl Ester (13). To 15 ml of a 10% sodium hydroxide solution was added 15 mg (3.4×10^{-2} mmol) of the anhydride 12. The mixture was boiled for 30 min. After cooling, the pale yellow salt was hydrolyzed by acidification with dilute hydrochloric acid. The pale yellow diacid 14 was filtered, washed with water until neutral, and dried quickly in vacuo. After drying, the acid was transferred into a 50-ml reaction flask and a solution of an excess of diazomethane in ether was added. After 30 min of stirring excess of diazomethane was destroyed with some acetic acid, after which the solvent was removed at reduced pressure. The ester was taken up in a minimum of hot chloroform and chromatographed on alumina with chloroform. After removal of the solvent, the residue was recrystallized from carbon tetrachloride, yielding 12 mg (73%) of the pure diester 13 (mp 308–309°).

Anal. Calcd for $C_{26}H_{12}S_3O_4$: C, 64.45; H, 2.49. Found: C, 64.3; H, 2.6.

Ir (KBr) carbonyl absorptions at 1711, 1720 cm^{-1} ; NMR (CD_2Cl_2 , CAT) 3 H δ 4.06 (s), 3 H 4.08 (s), 4 H 7.41 (m), 2 H 7.54 ppm (m); uv ($CHCl_3$) λ_{max} (log ϵ) 450 (2.88), 384 (3.68), 332 (3.83), 318 (s) (3.90), 304 (4.23), 294 (4.29) 288 (4.28), 262 (4.51).

The other anhydrides and diesters were obtained by an analogous procedure to that described for the preparation of 12 and 13.

9,10-Etheno-3,6-dithianaphth[2',1',8':3,4,5]azuleno[1,8,7,6-cdef]fluorene-9,10-dicarboxylic Anhydride (16). The anhydride 16 (mp $>400^\circ$) was obtained from the dehydrohelicene 15 (50 mg, 0.15 mmol). The yield of 16 was 11 mg (17%).

Anal. Calcd for $C_{26}H_{18}O_3S_2$: C, 72.21; H, 1.87. Found: C, 72.2; H, 2.0.

Ir (KBr) 1824, 1763, 1220, 1156, 918, 828, and 801 cm^{-1} .

When the anhydride 16 was boiled with dilute sodium hydroxide solution a yellow disodium salt was readily formed. However, after careful acidification 16 was reformed immediately.

9,10-Etheno-3,6-dithianaphth[2',1',8':3,4,5]azuleno[1,8,7,6-cdef]fluorene-4,5-dicarboxylic Anhydride (19). The anhydride 19 (mp $>400^\circ$) was obtained from the dehydrohelicene 18 (40 mg, 0.12 mmol). The yield of 19 was 31.2 mg (60%).

Anal. Calcd for $C_{26}H_{18}O_3S_2$: C, 72.21; H, 1.87; S, 14.83. Found: C, 72.2; H, 2.0; S, 14.4.

Ir (KBr) 1824, 1769, 1221, 1186, 888, 852, 741, and 550 cm^{-1} .

9,10-Etheno-3,6-dithianaphth[2',1',8':3,4,5]azuleno[1,8,7,6-cdef]fluorene-4,5-dicarboxylic Acid Dimethyl Ester (21). The dimethyl ester 21 (mp 320–322°) was obtained from the anhydride 19 (5 mg, 1.2×10^{-2} mmol). The yield of 21 was 4.4 mg (76%); calcd mol wt 478.033 (found by mass spectrometry, M 478.035); ir (Nujol) carbonyl absorptions at 1722, 1710 cm^{-1} .

1,11-Etheno-6,7-epithio-2,5,8-trithiabenz[3,4]azuleno[5,6,7,8-*jk*]-as-indacene-1,2-dicarboxylic Anhydride (26). The anhydride 26 (mp $>400^\circ$) was obtained from the dehydrohelicene 25 (30 mg, 8.5×10^{-2} mmol). The yield of 26 was 23 mg (61%).

Anal. Calcd for $C_{22}H_{14}S_4O_3$: C, 59.44; H, 0.91; S, 28.85. Found: C, 60.0; H, 1.2; S, 28.3.

Ir (KBr) 1830, 1772, 1233, 1186, 905, and 802 cm^{-1} .

1,11-Etheno-6,7-epithio-2,5,8-trithiabenz[3,4]azuleno[5,6,7,8-*jk*]-as-indacene-1,2-dicarboxylic Acid Dimethyl Ester (28). The dimethyl ester 28 (mp 338–342° dec) was obtained from the anhydride 26 (7.4 mg, 1.7×10^{-2} mmol). The yield of 28 was 5.7 mg (68%); calcd mol wt for $C_{24}H_{10}O_4S_4$, M 489.946 (found by mass spectrometry, M 490); ir (Nujol) carbonyl absorptions at 1733, 1714 cm^{-1} .

1,11-Etheno-6,7-epithio-2,5,8-trithiabenz[3,4]azuleno[5,6,7,8-*jk*]-as-indacene-8,9-dicarboxylic Anhydride (23). The anhydride 23 (mp $>400^\circ$) was obtained from the dehydrohelicene 22 (70 mg, 2.10^{-1} mmol). The yield of 23 was 65 mg (73%).

Anal. Calcd for $C_{22}H_{14}S_4O_3$: C, 59.44; H, 0.91; S, 28.85. Found: C, 59.5; H, 0.9; S, 28.9.

Ir (KBr) 1829, 1773, 1276, 1207, 1182, 1172, 920, 891, 794, and 746 cm^{-1} .

1,11-Etheno-6,7-epithio-2,5,8-trithiabenz[3.4]azuleno[5,6,-7,8-*ijkl*]-as-indacene-8,9-dicarboxylic Acid Dimethyl Ester (24). The dimethyl ester 24 (mp 320–324°) was obtained from the anhydride 23 (4.5 mg, 1.10^{-1} mmol). The yield of 24 was 4.0 mg (82%): calcd mol wt for $\text{C}_{24}\text{H}_{10}\text{O}_4\text{S}_4$, M 489.946 (found by mass spectrometry, M 489.947); ir (Nujol) carbonyl absorptions at 1718 and 1703 cm^{-1} .

1,11-Etheno-2,5,6-trithianaphth[2'.1'.8':3.4.5]azuleno[1,8,-7,6-*ijkl*]-as-indacene-1,2-dicarboxylic Anhydride (30). The anhydride 30 (mp >400°) was obtained from the dehydrohelicene 29 (70 mg, 0.2 mmol). The yield of 30 was 42 mg (48%).

Anal. Calcd for $\text{C}_{24}\text{H}_{16}\text{S}_3\text{O}_3$: C, 65.74; H, 1.38; S, 21.93. Found: C, 66.3; H, 1.7; S, 21.1.

Ir (KBr) 1825, 1769, 1231, 1171, 904, and 812 cm^{-1} .

9,10-Epithio-3,6-dithianaphth[2'.1'.8':3.4.5]azuleno[1,8,-7,6-*cdef*]fluorene (7). **A. By Soda Lime Decarboxylation.** The anhydride 12 (50 mg, 0.11 mmol) and soda lime (700 mg) were ground together and transferred into a sublimation apparatus. The reaction mixture was brought carefully under a nitrogen atmosphere and heated to 350° for 45 min. After cooling the sublimation apparatus was evacuated (2×10^{-3} mm) and heated again to 380–420° for 4 hr. The circulene (22 mg, 6.0×10^{-2} mmol) sublimed in yellow-green needles. Analytically pure 9 (mp 400–410° dec) was obtained by recrystallization from *p*-xylene.

Anal. Calcd for $\text{C}_{22}\text{H}_8\text{S}_3$: C, 71.71; H, 2.19. Found: C, 71.8; H, 2.2.

B. By Cu-Quinoline Decarboxylation. The anhydride 12 (40 mg, 9×10^{-2} mmol) was added to a suspension of 50 mg of Cu powder in 10 ml of quinoline. The mixture was heated at 240° for 24 hr. After cooling the reaction mixture was diluted with chloroform (50 ml). The organic solution was extracted with 2 *N* hydrochloric acid (6×20 ml), water, and sodium bicarbonate solution. After drying, filtering, and evaporation of the solvent, the residue was chromatographed on alumina with benzene. The eluate gave upon concentration 12 mg (36%) of the circulene 9.

The circulenes 8, 9, and 10 were obtained by a similar procedure as that described for the preparation of 7.

1,11-Etheno-6,7-epithio-2,5,8-trithiabenz[3.4]azuleno[5,6,-7,8-*ijkl*]-as-indacene (9). **A. By Soda Lime Decarboxylation of the Anhydride** 23 (50 mg, 0.11 mmol). The yield of the circulene 9 (mp 460° dec) was 21.1 mg (51%).

B. By Cu-Quinoline Decarboxylation of the Anhydride 23 (70 mg, 0.16 mmol). The yield of the circulene 9 was 8 mg (13.3%).

C. By Soda Lime Decarboxylation of the Anhydride 26 (33 mg, 7.4×10^{-2} mmol). The yield of the circulene 7 was 12 mg (42.9%).

D. By Cu-Quinoline Decarboxylation of the Anhydride 26 (150 mg, 0.34 mmol). The yield of the circulene 7 was 16.5 (13%).

Anal. Calcd for $\text{C}_{20}\text{H}_6\text{S}_4$: C, 64.14; H, 1.61. Found: C, 64.1; H, 1.6.

9,10-Etheno-3,6-dithianaphth[2'.1'.8':3.4.5]azuleno[1,8,7,6-*cdef*]fluorene (8). **A. By Soda Lime Decarboxylation of the Anhydride** 16 (9.2 mg, 2.1×10^{-2} mmol). The yield of the circulene 8 was 2.3 mg (23%).

B. By Soda Lime Decarboxylation of the Anhydride 19 (80 mg, 0.18 mmol). The yield of the circulene 8 (mp 410° dec) was 35 mg (54%).

Anal. Calcd for $\text{C}_{24}\text{H}_{10}\text{S}_2$: C, 79.51; H, 2.78; S, 17.69. Found: C, 79.4; H, 2.8; S, 17.7.

Picrate of Circulene 8. To a stirred solution of 8 (10 mg) in *p*-xylene (10 ml) was added dropwise a solution of picric acid (10 mg) in absolute ethanol (3 ml); the solution was refluxed for 10 min, cooled, and allowed to stand overnight. The almost black colored needles were filtered, washed with ethanol, and dried in vacuo. The crystals decomposed above 238°.

Anal. Calcd for $\text{C}_{30}\text{H}_{13}\text{N}_3\text{O}_7\text{S}_2$: N, 7.10. Found: N, 6.6.

1,11-Etheno-2,5,6-trithianaphth[2'.1'.8':3.4.5]azuleno[1,8,7,6-*ijkl*]-as-indacene (10). **By Soda Lime Decarboxylation of the Anhydride** 30 (49 mg, 0.11 mmol). The yield of the circulene 10 (mp 390° dec) was 20 mg (50%).

Anal. Calcd for $\text{C}_{22}\text{H}_8\text{S}_3$: C, 71.71; H, 2.19; S, 26.10. Found: C, 71.8; H, 2.3; S, 25.9.

Thiacoronene (11). The Diels-Alder reaction was carried out with the dehydrohelicene 37 (70 mg, 0.25 mmol), chloranil (160 mg), and maleic anhydride (950 mg). At the end of the reaction a dark-brown mixture of anhydrides was obtained, which were not identified at that stage. The crude mixture was used for the soda lime decarboxylation.

The anhydrides (72 mg) and soda lime (1 g) were ground together and transferred to a sublimation apparatus. The mixture was

brought under a nitrogen atmosphere and heated at 370° for 1 hr. After evacuation of the apparatus (10^{-2} mm) the mixture of polyaromatics started to sublime over a long range of bath temperatures (300–460°). The reaction products were dissolved in benzene and chromatographed on alumina with benzene. This yielded 18 mg of yellow-green material and TLC analysis of this mixture showed the presence of at least four different products. These products could be separated using preparative thick layer chromatography on alumina with benzene-cyclohexane (1:5) as eluting agent. The compound with the highest *R*_f value could be identified as thiacyclicene. Pure 11 (3 mg) was obtained by recrystallization from methylcyclohexane. Thiacyclicene starts to sublime at 262°. The crystals soften at 326° and melt above 350°: calcd mol wt for $\text{C}_{22}\text{H}_{10}\text{S}$, M 306.050 (obtained by mass spectrometry, M 306.051).

Thiacoronene 3,3-Dioxide (39). To a stirred solution of thiacyclicene (1 mg) in CH_2Cl_2 (2 ml) was added excess *m*-chloroperbenzoic acid (6 mg). Stirring was continued for 5 hr, after which the solution was filtered and 10 ml of cold methanol was added. The precipitated sulfone 39 (0.7 mg) was collected and dried. From this material only a mass spectrum was taken.

9,10-Etheno-3,6-dithianaphth[2'.1'.8':3.4.5]azuleno[1,8,7,6-*cdef*]fluorene-4-carboxylic Acid Methyl Ester (31). To a solution of 18 (58 mg, 0.21 mmol) in hot *p*-xylene (10 ml) was added methyl propiolate (5 ml) and chloranil (60 mg). After the addition the solution was refluxed for 3 days and after cooling the precipitate was filtered, washed with benzene and ether, and dried in vacuo. The solid was taken up in a minimum of hot *p*-xylene and chromatographed on alumina with chloroform. After removal of the solvent the residue was recrystallized from *p*-xylene. This yielded 43 mg (60%) of the pure ester 31 (mp 309–311°): calcd mol wt for $\text{C}_{26}\text{H}_{12}\text{O}_2\text{S}_2$, M 420.0279 (found by mass spectrometry, M 420.0289); ir (Nujol) most important absorptions at 1696, 1292, 1249, 1202, and 845 cm^{-1} .

Decarboxylation of the acid 32 with soda lime according to the general procedure yielded the circulene 18 in 45% yield.

ESR Spectra. Electrolytic Reduction. The spectra were recorded in a flat cell with a platinum gauze cathode at the bottom of the flat area and a platinum anode in the middle of the cell. The cell was provided with a variable direct current supply. After degassing with dry nitrogen, radical anions could be detected at 10^{-4} A solutions in DMF with TEAP as the supporting electrolyte.

Reduction of 31 with LiAlH₄. To a suspension of 500 mg of LiAlH₄ in dry THF (15 ml) was added dropwise with vigorous magnetic stirring 21.8 mg (5.2×10^{-2} mmol) of the methyl ester 31 in 125 ml of dry THF. After the addition was complete the reaction mixture was refluxed for 18 hr. The reaction flask was cooled in an ice bath and the LiAlH₄ was destroyed by the careful addition of some water. Subsequently 10 ml of a 4*N* HCl solution and 50 ml of benzene were added. After extraction the benzene layer was separated and washed with water and NaHCO₃ solution. After drying (MgSO₄), filtering, and evaporation of the solvent the residue was taken up in a minimum of hot *p*-xylene and chromatographed on alumina with benzene. After removal of the solvent the residue was recrystallized from benzene. The yield of 48 (mp 335° dec) (17.2 mg) was 88%.

Anal. Calcd for $\text{C}_{25}\text{H}_{12}\text{S}$: C, 79.74; H, 3.21. Found: C, 79.9; H, 3.4.

Uv (CHCl_3) λ_{max} (log ϵ) 436 (2.72), 412 (3.06), 384 (3.51), 363 (3.51), 342 (3.64), 323 (4.10), 312 (4.30), 296 (4.18), 281 (4.52), 264 (4.68), 249 (4.65).

Attempted Resolution of 48. **A.** To a refluxing solution of 48 (7.951 mg, 2.1×10^{-2} mmol) in 2 ml of benzene was added (+)-TAPA (4.271 mg, 9.5×10^{-3} mmol) in 4 ml of benzene. The solution became directly green colored. Refluxing was continued for an additional 10 min and after cooling 3 drops of ethanol was added to the solution. After standing for 2 days at room temperature the precipitated circulene (4.312 mg) was filtered, washed with benzene and ethanol, and dried in vacuo. This material (dissolved in 4 ml of CHCl_3) showed no optical rotation. To the mother liquor was added an additional 3 ml of ethanol. The precipitated circulene (2.013 mg) was collected and washed as before. This material showed also no optical rotation.

B. To a suspension of 48 (11.0 mg, 2.9×10^{-2} mmol) in dichloroethane (5 ml) was added a solution of (+)-TAPA (9.3 mg, 2.1×10^{-2} mmol) in 6 ml of dichloroethane. The resulting green-colored solution was cooled at -30° for 24 hr. Ethanol (4 ml) was added and cooling was continued for an additional 3 days. The crystallized circulene (4.23 mg) was separated from the solution by decantation, thoroughly washed with ethanol, and then redissolved in carbon disulfide (6 ml) which was previously cooled to -50° . The solution was transported to a thermostated cell in which the

temperature was kept at -30° . Again no optical rotation was observed.

C. To a solution of 48 (4.651 mg, 12.5×10^{-3} mmol) in chloroform (10 ml) was added (+)-TAPA (3.578 mg, 8×10^{-3} mmol) in chloroform (2 ml). The resulting solution was refluxed for 5 min and half of the chloroform (6 ml) was removed by distillation. After cooling and standing for 48 hr, the precipitated complex (0.988 mg) was separated from the solution by decantation and washed with 1 ml of cold chloroform. The solid was dried and then dissolved in 4 ml of chloroform and the rotation was measured. The observed values were α_{435} 0.025° , α_{546} 0.005° , and α_{578} $<0.005^\circ$. After removal of the chloroform and addition of 5 ml of ethanol the resulting circulene (0.314 mg) was filtered and washed with benzene-ethanol. This material showed no optical rotation.

Registry No.—6, 30689-70-4; 7, 35817-61-9; 8, 54844-47-2; 8 picrate, 54844-48-3; 9, 54844-49-4; 10, 54844-50-7; 11, 40516-55-0; 12, 35817-59-5; 13, 35817-60-8; 15, 30689-69-1; 16, 54844-51-8; 18, 54844-52-9; 19, 54844-53-0; 21, 54869-88-4; 22, 54844-54-1; 23, 54844-55-2; 24, 54844-56-3; 25, 54844-57-4; 26, 54844-58-5; 28, 54844-59-6; 29, 54844-60-9; 30, 54844-61-0; 31, 54844-62-1; 37, 54844-63-2; 39, 54844-64-3; 48, 54869-87-3; maleic anhydride, 108-31-6; methyl propiolate, 922-67-8; LiAlH₄, 16853-85-3.

References and Notes

- (1) (a) Taken in part from J. H. Dopper, Ph.D. Thesis, Groningen, 1974. (b) Preliminary communication about this subject: J. H. Dopper and H. Wynberg, *Tetrahedron Lett.*, 763 (1972).
- (2) For a detailed review see E. Clar, "Polycyclic Hydrocarbons", Academic Press, New York, N.Y., 1964.
- (3) (a) R. Scholl and K. Meyer, *Chem. Ber.*, **65**, 902 (1932); (b) E. Clar and M. Zander, *J. Chem. Soc.*, 4616 (1957); (c) J. R. Davy and J. A. Reiss, *J. Chem. Soc., Chem. Commun.*, 806 (1973).
- (4) R. L. Flurry, Jr., "Molecular Orbital Theories of Bonding in Organic Molecules", Marcel Dekker, New York, N.Y., 1967, p 43.
- (5) J. M. Robertson and J. G. White, *J. Chem. Soc.*, 607 (1945).
- (6) W. E. Barth and R. G. Lawton, *J. Am. Chem. Soc.*, **88**, 380 (1966); **93**, 1730 (1971).
- (7) G. L. Gleicher, *Tetrahedron*, **23**, 4257 (1967).
- (8) The name corannulenes has been proposed by Hellwinkel.⁹ It is based upon the idea that all of the circulenes can be formally written as double annulene systems.
- (9) D. Hellwinkel, *Chem.-Ztg.*, **94**, 715 (1970).
- (10) For a general review see H. Wynberg, *Acc. Chem. Res.*, **4**, 65 (1971).
- (11) For the synthesis of heterohellicenes see (a) M. B. Groen, H. Schadenerg, and H. Wynberg, *J. Org. Chem.*, **36**, 2797 (1971); (b) J. H. Dopper, D. Oudman, and H. Wynberg, *J. Am. Chem. Soc.*, **95**, 3692 (1973); (c) P. G. Lehman and H. Wynberg, *Aust. J. Chem.*, **27**, 315 (1974).
- (12) J. H. Dopper, D. Oudman, and H. Wynberg, *J. Org. Chem.*, submitted for publication.
- (13) (a) H. Erdman and H. E. Höglberg, *Tetrahedron Lett.*, 3389 (1970); (b) *Chem. Commun.*, 773 (1968); (c) H. E. Höglberg, *Acta Chem. Scand.*, **27**, 2591 (1971).
- (14) R. C. Cookson and J. Dance, *Tetrahedron Lett.*, 879 (1962).
- (15) R. D. Brown, *J. Chem. Soc.*, 691 (1950).
- (16) (a) M. J. S. Dewar, *J. Am. Chem. Soc.*, **74**, 3357 (1952); (b) H. Hopff and A. R. Schweizer, *Helv. Chim. Acta*, **42**, 2315 (1959).
- (17) In the calculations the following parameters were used: $\alpha_s = \alpha + \beta$, $\beta_{cs} = 0.7\beta$. The calculations were carried out by Dr. E. Bouwhuis of this laboratory.
- (18) A. Jeanes and R. Adams, *J. Am. Chem. Soc.*, **59**, 2608 (1937).
- (19) (a) T. C. Bruice and U. K. Pandit, *J. Am. Chem. Soc.*, **82**, 5858 (1960); (b) T. C. Bruice and W. C. Bradbury, *ibid.*, **87**, 4851 (1965).
- (20) J. Lawson, R. Du Vernet, and V. Boekelheide, *J. Am. Chem. Soc.*, **95**, 956 (1973).
- (21) Precedence for this type of behavior is found in A. S. Onishchenko, "Diene Synthesis", English translation by L. Mandel, Jerusalem, 1964, p 580-583.
- (22) (a) L. H. Klemm, D. R. McLoy, and D. R. Olsen, *J. Heterocycl. Chem.*, **7**, 1347 (1970); (b) J. Heiss, K. P. Zeller, and B. Zech, *Tetrahedron*, **24**, 3255 (1968); (c) E. K. Fields and S. Meyerson, *J. Am. Chem. Soc.*, **88**, 2836 (1966).
- (23) We realize that the use of "normal" reaction mechanisms for explaining mass spectral cleavages is dubious to say the least.
- (24) (a) A. J. Jones, T. D. Alger, D. M. Grant, and W. M. Litchman, *J. Am. Chem. Soc.*, **92**, 2386 (1970); (b) G. Frackel, R. E. Carter, A. McLachlan, and J. H. Richards, *ibid.*, **82**, 5846 (1960); (c) P. Lauterbur, *ibid.*, **83**, 1838 (1961); (d) H. Spiesecke and W. G. Schneider, *Tetrahedron Lett.*, 468 (1961).
- (25) Refers to the thiopheno[2.3-*b*]thiophene isomer.
- (26) These calculations were carried out by Dr. P. B. Koster of this laboratory.
- (27) (a) J. A. Pople, *Trans. Faraday Soc.*, **49**, 1375 (1953); (b) R. Pariser and R. G. Parr, *J. Chem. Phys.*, **21**, 2413 (1965).
- (28) B. Bak, L. Hansen, and J. Rastrup-Anderson, *Discuss. Faraday Soc.*, **19**, 30 (1955).
- (29) E. G. Cox, D. W. J. Cruickshank, and J. A. S. Smith, *Proc. R. Soc. London, Ser. A*, **247**, 1 (1958).
- (30) K. Nishimoto and N. Mataga, *Z. Phys. Chem.*, **12**, 335 (1957).
- (31) K. Nishimoto and L. S. Foster, *Theor. Chim. Acta*, **4**, 155 (1966).
- (32) J. Fabian, A. Mehlihorn, and R. Zahradnik, *J. Phys. Chem.*, **72**, 3975 (1968).
- (33) A. D. McLachlan, *Mol. Phys.*, **3**, 233 (1966).
- (34) (a) H. M. McConnell, *J. Chem. Phys.*, **24**, 633, 674 (1956); (b) hyperfine splittings for $Q = 27$.
- (35) (a) B. Bak, D. Christensen, L. Hansen-Nygaard, and J. Rastrup-Anderson, *J. Mol. Spectrosc.*, **7**, 58 (1961); (b) *ibid.*, **9**, 124 (1962).
- (36) For another example see M. Cerny and J. Malek, *Tetrahedron Lett.*, 1739 (1969).
- (37) (a) J. H. Brewster, S. F. Osman, H. O. Bayer, and H. B. Hopps, *J. Org. Chem.*, **29**, 105, 110, 116, 121 (1964); (b) D. C. Wigfield and K. Taymaz, *Tetrahedron Lett.*, 4841 (1973); (c) B. R. Brown and A. M. S. White, *J. Chem. Soc.*, 3755 (1957).
- (38) (a) M. S. Newman and D. Lednicer, *J. Am. Chem. Soc.*, **78**, 4765 (1956); (b) *ibid.*, **77**, 3420 (1955).
- (39) M. S. Newman and W. B. Lutz, *J. Am. Chem. Soc.*, **78**, 2469 (1956).
- (40) The obvious way to demonstrate nonplanarity of the circulenes would have been a determination of the crystal structure by X-ray analysis. Numerous attempts were made by us to obtain a crystal which fulfilled the geometrical requirements necessary for a structure determination. Notwithstanding the fact that different crystal-growing processes were undertaken the cross section of the obtained crystals never exceeded 0.05 mm. With this type of crystals one can of course observe diffracted intensities, but a sufficient number of accurate intensities, necessary to solve the planarity-nonplanarity problem, could not be obtained.
- (41) A. K. Colter, S. S. Wang, G. H. Megerle, and P. S. Ossip, *J. Am. Chem. Soc.*, **86**, 3106 (1964); **87**, 847 (1965).

Polymeric Reagents. IV.¹ Synthesis and Utilization of an Insoluble Polymeric Organotin Dihydride Reagent

Ned M. Weinshenker, Guy A. Crosby,* and Jack Y. Wong²

Chemical Synthesis Laboratories, Dynapol, Palo Alto, California 94304

Received February 11, 1975

The preparation of an insoluble polymeric hydride reagent has been achieved by the incorporation of *n*-butyltin dihydride functional groups onto a macroreticular polystyrene matrix. Reaction of the polymeric organotin dihydride reagent with iodoctane indicated the minimum hydride content to average 2.0 mmol/g of polymer. Utilization of the reagent for the reduction of aldehydes and ketones to alcohols and the reduction of halides to hydrocarbons is discussed. The selective reduction of only one functional group of a symmetrical difunctional aldehyde (terephthaldehyde) is also demonstrated. The regeneration and stability of the reagent are also discussed.

The chemical industry is being faced with the ever-increasing problems of pollution control and a scarcity of raw materials. Recent developments^{1,3} in the area of insoluble, regeneratable reactive polymers has resulted in the availability of many new reagents with unique properties that

are capable of providing solutions to these problems. Despite the growing list of polymers that have been used to effect oxidation, hydrogenation, alkylation, etc., there has been no report of a general reducing agent possessing a wide range of applications. We now describe our efforts di-